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Following a simultaneous solution to the conduction problem for the fin and the laminar 
boundary layer equations for the flowing fluid, heat transfer characteristics for a cylindrical 
fin washed by a combined forced and free convective f low have been determined when the 
buoyancy assists as well as when it opposes the main flow. Results are presented for the 
buoyancy influence parameter in the range - 0 . 3  ~< ~ <  5, dimensionless radius of the fin in 
the range 1 ~<R0~<4, and the conduction-convection parameter in the range O<<,Ncc<~6 
along with results of the conventional fin model. It has been found that the conventional 
model overpredicts the fin effectiveness at small Ncc values and underpredicts the same for 
large /Vcc values, though the deviation is small. However, the local predictions of 
temperature distribution and of heat flux by the conventional model are in substantial error. 

Keywords: fin heat transfer; free and forced f low 

Introduction 

Heat transfer from a fin results from a combination of 
conduction within the fin and convection to the fluid 
surrounding the fin. The boundary conditions at the interface 
between the fin and the fluid require continuity in temperature 
and heat flux. Thus the conductive and convective heat transfers 
are coupled. Conventionally,' however, the fin heat conduction 
equation alone is solved using a uniform value (taken from the 
literature) of the heat transfer coefficient. This approach, 
hereafter called the simple model, leads to wrong results because 
the heat transfer coefficient generally varies over the fin surface. 
Although the fin heat conduction equation can be solved 
numerically for an arbitrarily varying heat transfer coefficient, 
the problem is that the correct distribution of this heat transfer 
coefficient is unknown a priori. The only way out, hereafter 
called the complete model, is to solve the coupled conductive- 
convective heat transfer problem. Moreover, buoyancy force 
may also be important. In that case the flow field will also 
depend on the temperature field. 

For  rectangular fins, complete model studies have been 
carried out by Sparrow and Chyu t for forced convection, by 
Sparrow and Acharya 2 for natural convection, and by 
Sunden a,* for mixed convection, only for the case of buoyancy 
assisting the main flow. Garg and Velusamy s reported a simple 
method based on a similar solution approach for a wide range of 
Prandtl numbers. The effect of the Prandtl number has also been 
studied by Sunden 6. 

It is well established that the convective boundary layer over a 
cylinder is thicker than that over a flat plate, owing to the 
curvature of the cylinder. Hence the results for rectangular fins 
cannot be applied to cylindrical fins without considerable error. 
Moreover, for cylindrical fins there exists no similar solution, 
owing to the curvature terms in the equations. Employing a 
pseudosimilarity variable and a finite difference method similar 
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to the one described in Ref. 7, cylindrical fins have been 
considered by Huang and Chens for forced convection and by 
Huang e t  al .  9 for natural convection. However, the case of 
mixed convection for cylindrical fins has not been considered 
before. Moreover, the analysis of Huang and Chens has some 
deficiencies. For  example, for an isothermal fin (No~= 0), the 
nondimensional fin temperature (Ref. 8, Equation 16) is unity. 
Hence the dimensionless heat transfer coefficient (Ref. 8, 
Equation 20) and the dimensionless heat flux (Ref. 8, Equation 
26) are exactly the same. But the results (Ref. 8, Figs. 2, 3) do not 
reveal this for the parameter 2 = 3. The deviation is about 30~o. 
Moreover, at the base of the fin the heat transfer coefficient and 
the heat flux must be the same (for all Ncc values) because the fin 
temperature is unity at that point according to the boundary 
condition. This aspect is not revealed in Ref. 8, at least for 2 = 3. 

Here we solve for the combined free and forced convection 
over a cylindrical fin in order to study the effect of various 
parameters on the local heat transfer characteristics. This is 
essential for accurate heat transfer calculations. Although the fin 
conduction equation has been solved by either a relaxation 
procedure a'4 or a direct matrix inverse method s'9, we use the 
simple Runge-Kutta method of integration s without any 
iteration. Our method is very inexpensive compared to the 
relaxation method or the matrix inverse method. Results are 
presented for the effect of various parameters on mixed 
convection over a cylindrical fin when the buoyancy assists and 
when it opposes the main flow. These results are also compared 
with those for the simple model. 

Analysis 

Consider a laminar free stream with velocity u®, temperature 
To~, conductivity K, kinematic viscosity v, coefficient of 
volumetric expansion fl, and thermal diffusivity = approaching a 
cylindrical thin fin which is aligned parallel to the oncoming 
flow (see inset of Figure 1). The I'm of radius ro, length L (,> r o ), 
and conductivity Kris attached to a base held at temperature T O 
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such that it faces either vertically upward (buoyancy opposing 
the main flow) or vertically downward (buoyancy assisting the 
main flow). The flow takes place in a gravitational field of 
acceleration g and is from the tip (x = 0) to the base (x = L) of the 
fin. The temperature of the fin is Tf(x), the temperature of the 
fluid within the boundary layer is T(x, r), and the heat transfer 
coefficient is h(x). 

Defining the dimensionless variables U = u/uoo, X = x/L, V= 
vRel/2/u~, R=rRet/2/L, Ro=roRel/2/L, O=(T- T~)/(T o -  T~), 
Of=(Tf-T~)/(To-T~), Re=u~oL/v, Pr=v/~t, and G r =  
gfl(T 0 - T~)La/v 2, we obtain the one-dimensional fin conduction 
equation 1° with negligible tip leakage 

d20f = NcchN(X)O f (I) 
dX 2 

with boundary conditions 

d0f 
Of(X = 1) = 1 and ~ (X = 0) = 0 (2) 

The boundary layer equations for the laminar, uniform 
property, viscous flow are 

~(RU)?x + ~ = 0  (3) 

Uff~+ ~ + ~ R ~ )  (4) 

and 

O0 ~0 1 1 O / dO\ 
U ~ - +  V ~ = p r  R ~ R  ~ )  (5) 

with the boundary conditions 

U=O=V,  O=Of(X) at R=R o 

U---~I, 0---~0 as R---~oo 

and 

U = I ,  0 = 0  a t X = 0 ,  R > R  o 

where Q = Gr/Re2; the conduction-convection parameter, No~ = 
(2KL/Krro)Re l/z, is the ratio of conductive resistance to 

convective resistance; the dimensionless heat transfer coeffÉcient 
hN(X)=(h(X)L/K)Re -1/2 and u and v are the velocity 
components along the axial and radial coordinates x and r, 
respectively. 

In deriving Equations 3 and 4, we have used Boussinesq 
approximation to approximate the fluid as incompressible 
except for the buoyancy term in the momentum equation 
(Equation 4). The heat transfer coefficient hN(X) to be used in 
the conduction equation is an outcome of the solution of the 
boundary layer equations, but the thermal boundary condition 
to the boundary layer equations is an outcome of the solution of 
the conduction equation. The coupling between the conduction 
and boundary layer equations is expressed by the requirement 
that the heat flux and the temperature be continuous at the fin- 
fluid interface. Hence the coupling is provided by 

0T 
h(x)(Tr(x)- T~)= - K  ~-r . . . .  (6) 

Solution 

The boundary layer equations (Equations 3-5) are solved by a 
finite difference marching technique, which is a modified form of 
the one described in Ref. 11 for flow in a circular tube. Retaining 
the nonlinearity of the inertia terms in Equation 4 and the 
coupling between Equations 4 and 5, we solve the finite 
difference equations iteratively by the Thomas algorithm at each 
marching X-location. 

For the solution of the second-order linear ordinary 
differential equation (Equation 1), two independent solutions 
0fl and 0f2 are  assumed such that 

dOfl(X = 1) = 0 (7) 
0 n (X = 1) = 1, dX 

and 

d0f2(X = 1) 
0f2(X = I) = 0, 1 (8) 

dX 

Equation 1 is integrated twice from X = 1 to X = 0, first with 
initial conditions 7 and then with initial conditions 8, using the 

Notation 

Cf 
g 
Gr 
h 
K, Kf 

L 
Ncc 
Pr 
q 
(2 
r, R 

ro, Ro 

Re 
T, rr 
u, U 

Skin friction coefficient 
Acceleration due to gravity 
Grashof number 
Heat transfer coefficient 
Thermal conductivity of fluid and fin, 
respectively 
Length of fin 
Conduction-convection parameter 
Prandt| number 
Local heat flux 
Overall heat transfer rate 
Dimensional and dimensionless radial 
coordinate, respectively 
Dimensional and dimensionless fin radius, 
respectively 
Reynolds number 
Temperature of fluid and fin, respectively 
Dimensional and dimensionless axial velocity, 
respectively 

v,V 

x ,X  

AX, AR 

V 

4, 
P 

0, Of 

Dimensional and dimensionless radial velocity, 
respectively 
Dimensional and dimensionless axial 
coordinate, respectively 
Thermal diffusivity of fluid 
Coefficient of volumetric expansion 
Grid sizes in axial and radial directions, 
respectively 
Kinematic viscosity of fluid 
Buoyancy influence parameter (= Gr/Re 2) 
Fin effectiveness based on an isothermal fin 
Density of fluid 
Shear stress on fin surface 
Dimensionless temperature of fluid and fin, 
respectively 

Subscripts 
0 Temperature at base of fin 
N Dimensionless value 
oo Free-stream value 

Indicates average value 
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Figure I Local heat transfer coefficient for an isothermal cylinder 
(Pr=0.7, R0=}, n=0) 

fourth-order Runge-Kutta method yielding 0,(X) and 0r2(X). 
Then the general solution of Equation 1 is a linear combination 
of Ot,(X) and Of 2(X) such that 

0f(X) = aOfl (X) + bOf2(X ) (9) 

where the arbitrary constants a and b are determined from the 
boundary conditions in Equation 2. 

The following iterative procedure is followed for the solution 
of Equations 1-6. 

1. A uniform fin temperature distribution such as Of(X)= 1 is 
assumed to initialize the iteration process. 

2. Using this 0f(X) as the boundary condition, we solve the 
boundary layer equations (Equations 3-5) and calculate the 
local heat transfer coefficient h(x) using Equation 6. 

3. With this h(x), the fin conduction equation (Equation I) is 
solved to get Of(X). 

4. Steps 2 and 3 are repeated until convergence occurs. 

C o m p u t a t i o n a l  d e t a i l s  

Following a step-size study, the step-size in the marching 
direction (AX) was taken as 5 x 10 -5 near the tip of the fin 
(X=0)  and gradually increased with X up to X=½. Beyond 
X=½, AX was gradually decreased to X =  1 to take care of 
steeper fin temperature gradients. Along the cross-stream 
direction very fine grids (of size AR = 0.04) were concentrated 
near the fin surface, and comparatively coarser grids (&R = 0.1) 
were imposed in the region far away from the t'm surface. 

For the convergence of the solution the difference in fin 
temperature values between two consecutive iterations was kept 
such that 

[O~+I(X)-O~(X)]/O~+I(X)<<.el for O~<X~<I 

where I represents the iteration index and el was taken a s  10  - 6  
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for the results presented here. For the convergence of the 
boundary layer equations the difference in the velocity 
distributions between two consecutive iterations was kept such 
that 

[U'+ I(R) - U'(R)]/U'+~(R)<~e2 for Ro<~R<~R~o 
where R~o is the radius of the outer edge of the axisymmetric 
boundary layer and e2 was kept at 10-3. We found almost no 
change in our results when e2 was taken as 10 -6, except for the 
additional computing time. A maximum of eight iterations was 
required for the conduction equation for the largest N~ value. 
We may also mention that no relaxation was necessary. 

A c c u r a c y  

For checking our numerical scheme we compared our results for 
an isothermal fin (N~--0) of radius Ro=~ in pure forced 
convective flow (Q = 0) with the local nonsimilarity solution of 
Yu and Sparrow 12 for an isothermal cylinder. Figure 1 shows 
this comparison for the local heat transfer coefficient. It also 
displays the erroneous results of Ref. 8. We compared our mixed 
convection results for isothermal fins of radii 1 ~< R 0 ~< 4 with the 
local nonsimilarity solutions obtained by Chen and Mucoglu la 
for isothermal cylinders in buoyancy-assisted mixed convective 
flow. Excellent agreement was obtained. 

We also compared the overall fin heat transfer rate QN with 
the heat flux integrated over the convecting fin surface. The 
deviation was less than 0.6 % for all ranges of the parameters 
considered. In order to test the method by which we solve the 
conduction equation, we fed a uniform value of heat transfer 
coefficient to it and compared its results with the analytical 
solution obtained from the simple model. The results matched 
exactly. 

It can be easily shown that for an isothermal fin, QN = 2n/~N, 
where /~N is the average heat transfer coefficient for an 
isothermal fin. Values of hN are given in Table 1. 

R e s u l t s  a n d  d i s c u s s i o n  

For air as the fluid (Pr=0.7), R0 ranging from 1 to 4, N~ 
ranging from 0 to 6, and the buoyancy influence parameter f~ 
ranging from - 0.3 to 5.0, dimensionless values of the local heat 
transfer coefficient hN, average heat transfer coefficient from an 
isothermal fin hN, local fin temperature Of, local heat flux qN, 
overall fin heat transfer rate QN, fin effectiveness ® based on an 
isothermal fin, local friction factor CrRe 1/2, and average friction 
factor C~fRe 1/2 were determined from the relations 

hN = .(~ hN(X) dX 

qN= --. qL~ .]Re-1/2=hN0f 

Table I Average heat transfer coefficient for an isothermal fin/~N 
(Pr=0.7) 

R0 ~ = 0  ~=1 ~ = 2  Q=5 t)= - 0 . 3  

1 1.0650 1.1284 1.1 732 
4/3 0.9562 1.0229 1.0688 

2 0.8474 0.9196 0.9677 
4 0.7258 0.8068 0.8580 0.9590 0.6779 
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Figure 2 Local heat transfer coefficient (Pr=0.7, Ro=4) 

Q 1Re_X/2=2ndOf (X= 1) 
QN= r o K ( ~ -  T~)J N~ dX 

1 

(I) :  , Cf-- 1. ,  2 , (7 r= Cf dX 
2 F ' ~  

0 

where q and Q respectively are the dimensional counterparts of 
qN and QN, r is the shear stress on the fin surface, and p is the 
density of the fluid. The conduction equation for Or in the simple 
model yields r° 

Of = cosh(No:/~N X2)1/2/cosh(N~(~N)I/2 

and the relations for qN, QN, and • in the simple model are 

qN = ]~N0f 

Q N = 2n( hN / Noc ) 1/2 tanh ( NccflN ) 1/2 

and 

(I:) = tanh(Ncc/~N) 1/2/(NechN)l/2 

H e a t  t r a n s f e r  c o e f f i c i e n t  

The variation of the local heat transfer coefficient over a fin of 
radius R o = 4 is shown in Figure 2 for various values of Q and 
Ncc. Observe that for Q = 0, any Ncc value as well as for Ncc = 0 
and any f~ value, the local heat transfer coefficient decreases 
monotonically in the flow direction as the boundary layer 
grows. However, it increases (for the entire fin length) as N~ 
increases for a fixed Q ~< 0, since a high value of N~ means a high 
flow rate and a high conductivity of the fluid. For  f~ > 0 and 
Nc¢ > 0, the hN--X curves display a minima whose location 
shifts toward the tip as N~ increases. Also for f l > 0 ,  h N 
decreases slightly with increasing N~ near the tip. This can be 

explained as follows. As N,= increases, the tip temperature 
decreases, rendering the effects of buoyancy less severe than that 
of fin surface friction. This dominating surface friction 
decelerates the fluid and reduces the heat transfer coefficient. 
The minima of these curves shift toward the tip because the 
higher the values of N~ and f~, the quicker the fluid picks up 
heat from the fin and the better the acceleration of the fluid, 
thereby causing the buoyancy to dominate over the surface 
friction and enhancing the heat transfer coefficient. Unlike the 
case where fl > 0, the heat transfer coefficient in the case where 
f~ < 0 decreases along the flow, exhibiting a saddle point; the 
saddle point is more visible for higher N~c values. 

The local heat transfer coefficient for a fin of radius Ro ={ in 
forced convective flow is shown in Figure 3. It is clear from 
Figures 2 and 3 that the heat transfer coefficient increases as R0 
decreases. One reason for this is that the heat convection area 
decreases with decreasing fin radius. The other reason, more 
important than the former but not explained in Ref. 8, is that the 
heat flux that enters the fin from the base increases with 
decreasing fin radius. This point will be given further attention 
later. The average value ofh N for isothermal fins of various radii 
is presented in Table 1. 

Loca l  h e a t  f l u x  

The local heat flux along with the prediction of a simple model is 
presented in Figures 4 and 5. To avoid duplication, the heat flux 
for isothermal cases is not presented, since it is the same as the 
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1.2 Local heat flux 

I.I 

I.O ! 

o . ,  , 

0.8 L 

0.7 \ 
Z % 

X I 
0.6 

/I 
II 

/I 0.5 l / 
1 l / / 

4 l  1 
0.4 / / l 

/ 6l  l 
I I 1 

0.3 ~ % . / / /  I I I  

I \  p /  
0.2 F\%~. ~ " " "  / 

L ~ - /  I I I I , 
0 0.2 0.4 0.6 0.8 1.0 

X 

Figure 3 Local heat transfer coefficient and local heat flux for 
--4 Pr=0.7, Ro-  ~ f~=O 
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heat transfer coefficient given in Figure 2. From Figures 4 and 5 
it is clear that the simple model underpredicts the heat flux in the 
region near the tip and overpredicts it in the rest of the region for 
low N~ and all Q values. As N= increases, the difference 
between the two models decreases for small fl values. But as the 
effect of buoyancy increases for large N= values, the difference 
again increases, though only in the region near the base. In fact, 
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the simple model underpredicts the heat flux near the base for 
large N= and Q values. For a fixed value of N= the heat flux 
increases with Q due to increased buoyancy effects. 

It is also clear that the heat flux decreases as N= increases, 
since the fin temperature decreases with increasing N= except 
for a small region near the base of the fin. This holds for all f~ 
values. Another important observation from Figures 4 and 5 is 
that the areas under the corresponding heat flux curves of the 
simple and complete models are almost the same. This enables 
the simple model to predict the overall fin heat transfer rate with 
an amazing accuracy. From a comparison of Figures 3 and 4 it is 
clear that the heat flux increases with decreasing radius of the 
fin. This is because the heat flux that enters the fin from the base 
increases with decreasing radius, and the heat convective area 
decreases with the fin radius. 

F i n  t e m p e r a t u r e  d i s t r i b u t i o n  

The fin temperature distribution predicted by both models is 
presented in Figure 6 for a fin of radius Ro = 4. It is clear that the 
temperature predicted by the simple model (dashed lines) is 
always higher than the one that really prevails (solid lines) for all 
values of No~ and Q. However, as t3 increases, the difference 
between the two models decreases for all N= values. As N= 
increases, the temperature distribution becomes less uniform 
and the tip temperature decreases due to decreased fin 
conductance (Kfro) and/or increased convective effects. 

Figure 7 shows the computed temperature distribution (solid 
lines) for a fin of radius Ro=-] in forced convective flow. A 
comparison of Figures 6 and 7 shows that for fixed values of N¢¢ 
and fl the fin temperature becomes less uniform and the tip 
temperature decreases with decreasing radius of the fin as the fin 
conductance decreases. Figure 7 also compares the fin 
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temperature distribution presented in Ref. 8 (chain line) with the 
present analysis. The analysis of Ref. 8 underpredicts the 
temperature distribution for both fin radii (R 0 = 4 and ~) and 
both values of No: (I and 4), though we present the comparison 

4, o only for Ro =~ and No: = 1. Deviations of at least 8.3 % and 19 
were observed for No: = 1 and 4, respectively, for fin radii Ro = 4 
and -~. Because of this underprediction of the fin temperature 
distribution, a temperature gradient steeper than the one that 
really prevails is expected at the base of the fin, thereby 
increasing the total heat transfer rate. 

Fin temperature distribution for other cases can be obtained 
from corresponding heat transfer coefficients and the heat 
fluxes. 

O v e r a l l  h e a t  t r a n s f e r  r a t e  

The overall heat transfer rate (solid lines) for forced and mixed 
convective flows is presented in Figures 8-10 along with 
predictions of the simple model (dashed lines). As expected from 
the above results, the overall heat transfer rate decreases with 
increasing No: as the fin conductance decreases and the fin 
becomes more nonisothermal. For  H>~0, the simple model 
overpredicts (almost negligibly) the overall heat transfer rate at 
small No: values (except for No: = 0) and underpredicts the same 
for high No: values. For  t3 <0,  however, the simple model 
underpredicts the overall heat transfer rate for all values of No: 
except 0. The maximum difference between the two models at 
the largest No: value is 2.3 % for Ro = 4 and H = 0, and 3.9 Y/oo for 
Ro=-~ and Q = 0 .  However, the difference decreases with 
increasing H-values. Also observe that the overall heat transfer 
rate increases when the buoyancy assists the main flow, and 
decreases when the same opposes the main flow. 

Also shown in Figure 8 is the overall heat transfer rate of 
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Huang and Chen 8. Their analysis overpredicts the heat transfer 
rate even for R0 = 4 and No: = 0, for which the local values of 
heat transfer coefficient and heat flux matched with our results 
exactly. Figure 1 of Ref. 8 predicts/~N =_0.847 for R0 = 4, N~ = 0, 
fZ=0, whereas the actual value is hN=0.726, as shown in 
Figure 2. 

Figure 11 depicts the effect of fin radius on the total heat 
transfer rate and the heat flux that enters into the fin from the 
base. The reference fin, for the results presented in Figure 11, is 
taken as the fin of radius R r ( = Ro) = 4 in forced convective flow 
(t3 = 0). The left ordinate represents the ratio of heat flux for this 
reference fin to that for the fin of radius Rf. The right ordinate 
represents a similar ratio for the total heat transfer rate. It is 
clear that the total heat transfer rate (solid lines) increases with 
Rf and tl. The heat flux that enters the fin at the base increases 
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with decreasing radius of the fin and increasing buoyancy effects 
(dashed lines). This explains why many smaller-diameter fins 
can transfer more heat than a smaller number of larger-diameter 
fins. 

Fin effectiveness 

The fin effectiveness ~ (for the complete model) based on the 
corresponding isothermal fin is presented in Figure 12. The fin 
effectiveness decreases as either fl or Nee increases, since the fin 
temperature distribution becomes less uniform when either fl or 
No= increases. We also mention, without displaying such results, 
that fin effectiveness increases with fin radius, owing to 
increasing uniformity in the fin temperature distribution. Fin 
effectiveness for the simple modelcan be obtained from Figures 
8-10 and the relation ~ = QN/2nhN.Table 2 shows that for f l  >/0 
the simple model overpredicts the effectiveness at small Nc~ 
values and underpredicts the same at large Ncc values, but for 
f~ < 0 it always underpredicts the effectiveness. This result is also 
in accord with the analysis of rectangular fins s. 

Friction factor 

The local and average friction factors have been presented in 
Figures 13, 9, and 10. For  t3 > 0 the local friction factor displays 
a minima for all No~ values. The negative slope of the curves 
indicates the deceleration of the fluid by the effect of surface 
friction, and the positive slope of the curves indicates the 
acceleration of the fluid by the effect of buoyancy. For  a fixed 
value of fl > 0 the local friction factor decreases with increase in 
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Figure 12 Fin effectiveness based on an isothermal fin for Pr=0.7, 
R0=4 (complete solution) 

T a b l e  2 Fin effectiveness 4) (Ro=4; Pr=0.7) 

~= - 0 . 3  ~=0  Q=2 

Simple Complete Simple Complete Simple Complete 
Ncc model solution model solution model solution 

1 0.822 0.826 0.812 0.812 0.787 0.785 
3 0.625 0.634 0.610 0.61 5 0.575 0.583 
6 0.479 0.497 0.465 0.48 0.431 0.45 
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N=, thereby decreasing the average friction factor as well. The 
friction factor approaches the value for forced convection as 
N¢~---*oo (N¢¢---*~ implies a completely insulated fin). For  a 
fixed value of No~ the local and average friction factors increase 
with Q, due to increased buoyancy effects. 

For  fZ < 0 the local and, hence, the average friction factors 
increase with N~. The local friction factor curves for Q < 0  
approach the zero value-- the sign for flow reversal. The chance 
for flow reversal is maximum for the isothermal case, and it 
decreases as Ncc increases. 

Conclus ions 

The problem of laminar, conjugate forced and mixed convective 
flows (both when the buoyancy assists and when it opposes the 
main flow) over a cylindrical fin has been studied. A very simple 
and efficient numerical method has been devised for the 
solution. The effects of various parameters, such as the 
buoyancy influence parameter Gr/Re 2, dimensionless radius of 

the fin R0, and the conduction convection parameter 
(2KL/Kfro)Re t/2 on the heat transfer characteristics, have been 
studied. Results of the complete numerical solution have been 
presented along with the results of the simple model. The simple 
model produces satisfactory results for the overall heat transfer 
rate, but the local predictions are in substantial error. Results 
are important for accurate heat transfer calculations from fins. 
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